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Phase synchronization in the forced Lorenz system

Eun-Hyoung Park, Michael A. Zaks, and Ju¨rgen Kurths
Institute of Physics, Potsdam University, Postfach 601553, D-14415 Potsdam, Germany

~Received 3 May 1999!

We demonstrate that the dynamics of phase synchronization in a chaotic system under weak periodic forcing
depends crucially on the distribution of intrinsic characteristic times of this system. Under the external periodic
action, the frequency of every unstable periodic orbit is locked to the frequency of the force. In systems which
in the autonomous case displays nearly isochronous chaotic rotations, the locking ratio is the same for all
periodic orbits; since a typical chaotic orbit wanders between the periodic ones, its phase follows the phase of
the force. For the Lorenz attractor with its unbounded times of return onto a Poincare´ surface, such state of
perfect phase synchronization is inaccessible. Analysis with the help of unstable periodic orbits shows that this
state is replaced by another one, which we call ‘‘imperfect phase synchronization,’’ and in which we observe
alternation of temporal segments, corresponding to different rational values of frequency lockings.
@S1063-651X~99!12212-8#
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I. INTRODUCTION

Recent years have witnessed a strong increase of int
in different manifestations of synchronization in vario
physical, chemical, and biological environments. Synchro
zation is commonly understood as adjustment of the state
coupled systems. In the case of a strong coupling the mot
in different subsystems can completely mimic each othe
weaker coupling can adjust typical time scales of the coup
systems without achieving the full coincidence between th
states. In its traditional form conceived over three centu
ago @1#, synchronization refers to ensembles of~two and
more! periodic oscillators with slightly different individua
frequencies; here, the weak coupling drives the individ
frequencies together or, in general, makes them comme
rable@2,3#. In the last decade, when the focus of the resea
has moved to chaotic phenomena, the notion of synchron
tion has been successfully generalized for chaotic oscillat
Here one can distinguish several stages of synchroniza
Thus, the complete synchronization~or, in a modified ver-
sion with unilateral coupling, ‘‘master-slave’’ synchroniz
tion! refers to the situation when two identical nonlinear s
tems are coupled; irrespective of the difference in init
conditions, after a certain transient, their states conve
@4–7#. In a more general case, the state of the led sys
becomes a function of the state of the leading one~‘‘gener-
alized synchronization’’@8–10#!.

A weaker form of synchronization which does not requ
that one of the coupled systems follow the evolution of
other one is restricted to the adjustment of intrinsic tim
scales. The natural time scale which characterizes a dyn
cal process is the time which a system requires for an
proximate return to its initial state. In terms of the motion
phase space this characteristic is given by the intervalt ret
between the two consecutive returns of the chaotic trajec
onto an appropriate secant surface~Poincare´ surface!. In gen-
eral, these intervals vary over the attractor:t ret is a function
of coordinates on the Poincare´ plane; however in many case
the variation is small compared to the value oft ret itself, and
the chaotic motion can be viewed as a nearly regular rota
PRE 601063-651X/99/60~6!/6627~12!/$15.00
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with chaotically modulated amplitude. This usually holds f
the attractors originating from the sequence of perio
doubling bifurcations, such as one of the prototypic lo
dimensional chaotic systems: the Ro¨ssler attractor. A rela-
tively weak periodic force applied to such a system c
impose its rhythm on the rotations without destroying t
erratic nature of the motion: although the returns onto
Poincare´ surface are adjusted to the period of the force,
mapping of this surface onto itself, induced by the flo
remains chaotic. Since the temporal characteristics of r
tions are their phase and frequency, this form of synchro
zation is called ‘‘phase synchronization’’@11#.

There are several ways to extend the notion of the ph
in order to enable its usage in the context of chaotic p
cesses. Since the phase usually is not available as a d
observable, some operational definition is necessary, w
would allow one to reconstruct it from the experimental
numerical data. It is natural to require that the properly
troduced phase as a function of time should grow ‘‘on t
average,’’ and its net increment between each two conse
tive intersections of the orbit with the Poincare´ plane should
be close to a constant~it is often convenient to scale thi
constant to 2p or 1!. One of the commonly accepted met
ods to visualize the phase is to consider the ‘‘analytic s
nal’’ introduced by Gabor@12#, and to decompose a tim
series into the instantaneous phase and instantaneous a
tude by means of the Hilbert transform. In certain situatio
due to the geometry of the attractor, rotations are clea
visible on phase portrait projections; this prompts a simp
choice: given the ‘‘rotation center,’’ we view the phase as
time-dependent angular polar coordinate on the phase pl
Perhaps, the most straightforward and crude approach w
be to define the phase by prescribing its values at the
ments of the intersection of the orbit with the Poincare´ sur-
face. Let us assign the value 2p to the phase increment afte
each turn. If now we admit the linear interpolation betwe
the intersection moments, the phase is rendered as a m
tonic piecewise-linear function of time: lettk be the moment
of thekth intersection of the orbit with the surface of sectio
6627 © 1999 The American Physical Society
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then for tk<t<tk11 the phase is simplyF(t)52pk
12p(t2tk)/(tk112tk).

For practical purposes of synchronization, all these d
nitions of phase appear to be equally applicable@13#. Given
the phase, the mean frequency of the chaotic motion is in
duced as the mean growth rate of the phase, averaged
the attractor.

Below, we focus on the onset of synchronization in pe
odically driven chaotic systems; this situation may be view
as a particular case of unilateral coupling in which the dr
ing subsystem performs periodic oscillations whereas
driven one exhibits chaotic behavior. Under the action of
periodic force, the typical time scales of the chaotic attrac
can get adjusted to the imposed period of oscillations. I
natural to expect that in the synchronized state the phas
the chaotic motion would follow that of the driving force
correspondingly, the forcing frequency should coincide w
the mean frequency of the chaotic observable. This phen
enon has been documented for driven systems whose c
acteristic times are confined within a relatively narrow ran
~see, e.g.,@14,15#!.

However, one often encounters continuous dynam
systems in which the band of characteristic times is rat
broad or even~semi-!infinite; the latter happens, e.g., whe
the closure of a chaotic attractor contains fixed points of
saddle type. In this caset ret diverges near the local stab
manifold of the saddle point. Situations in which the unsta
steady states~imaged in the phase space by saddle poin!
play an important role in dynamics are widely spread
finite-dimensional truncations of the equations of nonlin
optics~Raman scattering@16#, lasers with saturable absorbe
@17#, optothermal devices@18#!, thermal convection in cer
tain configurations@19–21#, or reductions of the weakly dis
sipative one- and two-dimensional complex Ginzbu
Landau equation near the boundary of the modulatio
instability @22,23#. The best known example is provided b
the Lorenz attractor@24#: here, in the course of chaotic evo
lution the relatively fast rotations around the unstable fo
points in phase space alternate with slowing down and l
hoverings near the saddle point.

In this paper, we consider the externally driven Lore
system in order to investigate the influence of unboun
return times on details of phase synchronization. For co
parison, we take two sets of parameters, the first one des
ing the ‘‘canonical’’ Lorenz attractor containing the sadd
point @24# and the second one corresponding to a qual
tively different kind of an attractor with narrow distributio
of t ret.

We intend to describe the synchronization phenomen
terms of unstable periodic orbits embedded into a stra
attractor. These orbits constitute a kind of a ‘‘skeleton’’ f
chaotic sets@25#, and knowledge of their properties allows u
to resolve many fine details of an attractor in terms of
cycle expansion@26–29#, to compute its fractal dimension
@30#, etc. Unstable periodic orbits have been widely e
ploited in the context of chaotic sets in mappings and flo
they provide a helpful tool for analyzing experimental da
@31–35#; recently the algorithms were elaborated to reco
them in numerical solutions of the partial differential equ
tions @36#. Finally, knowledge of these orbits allows us
proceed from the passive observation of chaotic proces
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the active interference into dynamics: one can control ch
@37# by adding small local perturbations which stabilize t
otherwise unstable periodic motions.

The Lorenz attractor which possesses an infinite num
of periodic solutions with two-dimensional unstable ma
folds has been several times analyzed by means of uns
periodic orbits@38,39#. Characterization of the Lorenz sys
tem in terms of these orbits has certain peculiarities.
many dynamical systems, tracking only several relativ
short unstable periodic orbits seems to be sufficient in or
to obtain a good approximation to the properties of the
tractor@40#. However, in systems close to the attractor cris
~of which the Lorenz attractor is a good example! some ef-
fects become visible only when one investigates orbits w
progressively increasing length@41,42#.

We find that the presence of the broadband of charac
istic times brings new features into synchronization-rela
phenomena. According to our results, in such system
seems impossible to achieve the state of perfect phase
chronization for which the frequency of the driving forc
would identically coincide with the mean frequency on t
attractor. We observe that during the chaotic evolution lo
segments of perfectly synchronized motion alternate w
short segments during which the external force lags beh
the chaotic rotations. A closer look shows that the lat
events correspond to the passage of the trajectory near
tain long periodic orbits. A detailed investigation demo
strates that even at this stage the system remains phase
chronized; however, this is a ‘‘masked’’ synchronizatio
caused by higher resonances: the frequencies do not coin
but are commensurate.

The layout of our paper is as follows. In the next secti
we describe the system under investigation and introduce
main characteristics to be computed. Further, we provid
brief general survey of phase synchronization in terms
unstable periodic orbits. Section III presents the bifurcat
diagram for the case when the return times on the attra
are confined within a narrow interval~the parameterr of the
Lorenz equations equals 210!. The results displayed in Sec
IV refer to the forced system atr 528; here we describe th
changes which are introduced into the picture of phase s
chronization by unbounded return times.

II. DRIVEN LORENZ EQUATIONS: PHASE AND
PERIODIC ORBITS

We consider the Lorenz system@24# driven by an external
force. The dynamics of dimensionless variablesx,y,z is gov-
erned by the equations

ẋ5s~y2x!,

ẏ5rx2y2xz, ~1!

ż5xy2bz1E cos~Vt !,

wheres, r, andb are the original Lorenz parameters, and t
dimensionless amplitude and frequency of the external fo
are denoted byE andV, respectively. To preserve the cha
acteristic mirror symmetry of the equations, the forcing te
is applied to the third variable. We fix the ‘‘canonical’’@24#
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PRE 60 6629PHASE SYNCHRONIZATION IN THE FORCED LORENZ SYSTEM
parameter valuess510 andb58/3. As for the parameterr,
we take two values which correspond in the autonom
system to two qualitatively different types of a chaotic attra
tor @Figs. 1~a! and 1~b!#: the nearly isochronous one and th
strongly nonisochronous one. We expect that the differe
in the distribution of intrinsic time scales should influen
the way in which the system reacts to the synchronizing
tion of the external force.

In the first caser 5210, we do not foresee particular di
ferences from the earlier studied example of the forc
Rössler system@14#; it serves as a convenient illustration
metamorphoses in phase space which accompany the p
synchronization. The second case, the classical Lorenz
tractor at r 528, is more complicated, since here the tim
between two consecutive intersections of the secant plan
a trajectory is, in principle, unbounded. In both cases
values of amplitude which we take (E<20 for r 528 and
E<10 for r 5210) are small compared to the maximal va
ues ofdz/dt in the autonomous system (;350 and;3500,
respectively!, and the introduced perturbations can
viewed as relatively weak.

Since we focus on phase synchronization, the phase o
motion should be defined properly. There are several way
introduce the phase~see, e.g., the three definitions in@11#!.
Insofar as we are interested in long-time effects, the det
within a single turn of the trajectory do not seem to be
special importance. For this reason, we choose the simp
and the most robust characteristics: as proposed in the In
duction, we infer the phase from the geometry of the orbit
is natural to assume that each new turn of the orbit sho
add 2p to the phasef. By the ‘‘turn’’ we denote the seg-
ment of the orbit between two consecutive intersections
the suitably chosen secant surface. The latter can be sele
in several ways. In order to escape the ambiguity which m
arise from the clockwise and counterclockwise rotations
the two opposite lobes of the Lorenz attractor, one c
choose, e.g., the surface on whichdz/dt in the unperturbed
system vanishes. Following the original work of Lorenz@24#,
we take a different choice: we define the Poincare´ surface by
the conditionz5r 21 and count the intersections at whic
dz/dt is negative.

Respectively, the mean frequency~which is the mean
time derivative of the phase! at the attractor can be compute
through any of the two apparently equivalent expressio
either as

v5 lim
T→`

2pN~T!

T
, ~2!

FIG. 1. Chaotic orbits of Eq.~1! for ~a! r 5210 and~b! r 528.
Dashed line: location of the Poincare´ surfacez5r 21.
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whereN(T) is the number of turns performed in the timeT,
or, conversely, as

v5 lim
N→`

2pN

T~N!
, ~3!

whereT(N) is the time required to completeN turns. Natu-
rally, the details of the phase evolution within a single tu
cannot be captured by such a crude construction; the p
which we pay is an inaccuracy inf bounded by62p and,
respectively, an error in the estimate ofv bounded by the
value6v/N.

Along with the averaged characteristics, we should a
introduce quantities which characterize every particular p
odic orbit embedded into the attractor. For the periodic or
which closes after the timeT0 and consists ofN0 turns~fol-
lowing @14#, we call this integer number the ‘‘orbit length’
or simply ‘‘length’’! its individual frequency is provided by
any of the expressions~2! and ~3! without the necessity to
take the limit:

v i5
2pN0

T0
. ~4!

An indispensable tool for studies of chaotic sets, unsta
periodic states have for our purpose yet another merit: e
of them can be viewed as an individual oscillator. Let us p
up one of these solutions and consider, first, the dynamic
its global stable manifold. This brings us back to the we
studied problem of the synchronization ofstable periodic
oscillations by external force. The introduction of period
forcing increases the dimension and changes the topolog
the phase space. Provided the forcing is weak enough~which
we will assume throughout our analysis!, an invariant
smooth torus evolves from the closed curve of the auto
mous chaotic system, and the orbits wind on this torus.

In parameter space, phase entrainment is observed in
tain ‘‘locking’’ regions ~the Arnold tongues! which corre-
spond to rational values of the ratio between the driv
frequencyV and the individual frequencyv i of the consid-
ered periodic orbit. Usually, only the main tongue in whi
the frequencies coincide is of relevance for applications.
side each Arnold tongue, there are two closed orbits on
surface of the invariant torus: the attracting one~it is natural
to call it ‘‘phase stable’’! and the repelling one~respectively,
‘‘phase unstable’’!; on the edge of the tongue these two o
bits coalesce and disappear via the tangent bifurcation. O
side the tongues the motion is not synchronized, and
trajectories are dense on the torus.

Now let us leave the stable manifold of the individu
periodic orbit and consider dynamics in the entire pha
space. On the parameter plane of the frequencyV and am-
plitude E of the driving force, the main Arnold tongue ema
nates from the pointE50, V5v i . Naturally, the individual
frequenciesv i differ for different periodic orbits of the au
tonomous systems; if they are close to each other, the m
Arnold tongues of these orbits overlap; moreover, a para
eter region common to all these tongues can exist, in wh
the phases of all periodic motions are locked to the phas
external force. If the forcing remains moderate, this is
overlapping region for the leftmost and the rightmost Arno
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tongues~they correspond to the periodic motions of the a
tonomous system with, respectively, the lowest and the h
est values ofv i). Since in the autonomous system each
riodic solution is unstable, the corresponding torus in
weakly driven system is also unstable. Chaotic trajectorie
their motion over the attractor repeatedly visit the neighb
hoods of the tori. Near a torus, the orbit approaches the
spective phase-stable solution and moves along it before
‘‘transverse’’ ~amplitude! instability repels it to anothe
torus. Inside the overlapping region, the phase-stable s
tion on each torus is phase locked with the external force
the ratio 1:1; therefore the perfect phase synchronizatio
observed. Owing to the noncoincidence of Arnold tongu
for different periodic orbits, just outside the region of pha
synchronization the synchronized segments of the trajec
alternate with the nonsynchronized ones. This specific k
of intermittency has been called ‘‘eyelet,’’ because each
cape from the phase-locked state is caused by the very
cise hitting of a neighborhood of a nonlocked torus@43#.

Since the characteristic multipliers~eigenvalues of the lin-
earization of the Poincare´ map near the fixed point! of peri-
odic orbits are readily available in computations, it can pro
helpful to relate them to the phenomena which we expec
observe in the course of our study. In the absence of
external force each periodic orbit has two multipliers. No
of these orbits is stable; this means that at least one of
multipliers should lie outside the unit circle on the compl
plane. Simple arguments show that this multiplier is real;
the caser 528 it is positive, and in the caser 5210 it can be
either positive or negative. The second multiplier~which cor-
responds to the decaying perturbations! is also real and lies
close to zero. When the system is driven by the exter
force, the dimension of the phase space is increased an
additional multiplier appears; under small amplitudes
forcing it characterizes the adjustment of the own phase
the system to the phase of the external force. If the forcin
weak, the phase evolution is decoupled from the amplit
dynamics, and all three multipliers remain real. Formally o
may extend the description to the autonomous caseE50; in
this case the system is nonsensitive to the external phase
direction in the phase space corresponding to its chang
marginal ~the torus is foliated into a continuum of close
curves!, and the multiplier equals 1. As soon as a nonz
forcing is introduced, this degeneracy is destroyed; of all
closed curves survive either two~inside phase-locked re
gions! or one~on their boundaries! or none~outside the Ar-
nold tongues!. Inside a phase-locking region, the third mu
tiplier for the phase-stable orbit lies between 0 and 1, and
the phase-unstable orbit it is larger than 1.

We expect that in the synchronized state phase-stable
bits build a skeleton of the chaotic attractor whereas
phase-unstable ones form a backbone of the repeller w
separates in phase space the basins of equivalent attra
shifted with respect to each other by 2p @43,14,15#. On the
edge of the phase-locking region, two orbits coalesce
disappear; an eyelet gap appears in the barrier formed by
repeller, and enables the phase drift with respect to the p
of external force. Naturally, not all the periodic orbits a
obliged to belong to an attractor or repeller; some of th
may lie in the region of phase space which is not visited
trajectories from the attractor; respectively, the disappe
-
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ance of a pair of such orbits goes unnoticed from the poin
view of the phase synchronization.

Finally, several words about the numerics employed:
locate the periodic orbits, we use the Newton method in s
eral variables. The periodic orbit is represented by a fix
point of the Poincare´ map; this map is two dimensional in th
autonomous case and three-dimensional for the driven
tem. To calculate on the parameter plane the boundarie
the phase-locked regions~which correspond to the tangen
bifurcation of periodic orbits!, we fix the driving amplitude
and treat the frequency of the external force as the fou
unknown variable.

III. r 5210: SYNCHRONIZING ALMOST ISOCHRONOUS
ATTRACTOR

At r 5210 ~as well as for the other values ofr between
197.4 and 215.4@44#! the autonomous Lorenz equation
have two mutually symmetric chaotic attractors. Their attr
tion basins in phase space are separated by the stable m
fold of the saddle point which is located at the origin. T
origin does not belong to either of the attractors; hence
times between consecutive returns onto the Poincare´ plane
are bounded. We show one of these attractors in Fig. 1~a!.

Due to strong transversal contraction, the trace of the
tractor on the Poincare´ surface is nearly nondistinguishab
from the one-dimensional curve; consequently the tw
dimensional mapping induced by the flow can be for pra
cal purposes replaced by the one-dimensional one. Furt
more, on this attractor the turns~in the above sense of orb
segments between consecutive intersections with the P
caréplane! in the half-spacex.0 alternate with the turns in
the half-spacex,0; after every two turns the orbit returns t
the initial half-space. Therefore it is sufficient to consider t
one-dimensional mapping in one of the half-spaces~natu-
rally, keeping in mind that each iteration of this map corr
sponds to two turns of the orbit!. Such a mapping recon
structed numerically from thex coordinate of the intersection
points is presented in Fig. 2~a!. This proves to be a unimoda
map reminiscent of the logistic mappingx→ax(12x); com-
parison of symbolic itineraries for the extrema of the tw
mappings shows that the dynamics observed in our sys
corresponds toa'3.80552 . . . . Thesecond part of the plo
presents the return timet ret as a function ofx @Fig. 2~b!#. It
can be seen that variations oft ret are quite moderate.

Since we are going to interpret synchronization in ter
of unstable periodic orbits, the distribution of the frequenc

FIG. 2. ~a! Return mapping and~b! return time on the Poincare´
surfacez5r 21 for r 5210 ~two turns of the orbit in the phase
space!.
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PRE 60 6631PHASE SYNCHRONIZATION IN THE FORCED LORENZ SYSTEM
of these orbits~4! is of obvious importance. Not all of the
unstable periodic orbits existing in Eq.~1! at r 5210, E50
are embedded into the chaotic attractor; many of them~born
mostly from the homoclinic explosion atr 513.926@44#! are
located in the other parts of the phase space and their
vidual frequencies are irrelevant in our context. As for t
orbits belonging to the attractor, we have computed th
frequencies until the orbit length 24. As can be seen from
data plotted in Fig. 3, the distribution is nearly monoch
matic: the difference between the highest and the lowest
quency is less than 0.2% of the mean frequency of the
tonomous chaotic motionva524.9222 . . . ~the latter value
is estimated from 107 turns of a chaotic orbit!. Therefore,
one can hope to synchronize the entire chaotic motion
applying a relatively weak periodic force with the frequen
close tova .

To detect phase synchronization in the driven system,
have computed the difference between the mean freque
of the observed chaotic motionv and the frequency of the
driving force V: for the synchronized state this differenc
should vanish. The plot in Fig. 4 presentsv-V as a function
of V under a fixed value of the amplitudeE; the horizontal
plateau corresponds to the interval of theV values which

FIG. 3. Individual frequencies of periodic orbits atr 5210. The
mean frequencyva of autonomous chaotic motion is shown b
solid line.

FIG. 4. Difference between mean frequencyv and driving fre-
quency V for r 5210, E53. v is estimated from 106 turns of
chaotic orbit.
i-

ir
e
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e-
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y
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cy

ensure the synchronization. To check for the occasio
phase slips, we magnify the part of this plot around the p
teau; as seen in the inset, the differences between the c
puted values and zero lie within the error estimate6v/N for
v.

The coincidence of frequencies is a necessary condi
for phase synchronization; it is not a sufficient one, since
does not exclude the weak phase drift which is slower th
linear in time. Numerical observations inside the plateau
not disclose any phase drift within 106 turns of the orbit.
This allows us to conjecture that the observed state is c
pletely phase synchronized. Varying the value of the forc
amplitude, we determine on the plane of the parameterV
andE the domain of phase synchronization~Fig. 5!.

By itself, the condition of vanishingv-V through which
we determine the state of phase synchronization provide
information on the kind of synchronized behavior: it can
both chaotic and periodic. A closer look at the regimes o
served inside this domain indicates that in certain param
regions chaos yields to periodicity: there is a large wind
with a stable periodic orbit which makes six turns in t
phase space; just outside this window stable orbits o
32n turns can be encountered, and there is also a sm
region with stable motions of length 14. The origin of the
periodic windows can be interpreted with the help of t
return mapping. We mentioned already that the o
dimensional mapping induced by the flow in the autonomo
system~recall that in obtaining this map only half of the orb
turns counts! appears to be equivalent to the logistic mappi
at a53.80552 . . . . This value is remarkably close to thea
511A853.8284 . . . which marks the lower boundary o
the period-3 window in the logistic mapping; the interv
3.774 14,a,3.774 45 corresponding to the period-7 wi
dow of the logistic mapping is also rather close. Apparen
weak perturbations introduced by the forcing deform t
mapping and can bring it across the boundary of perio
behavior. We assume that a multitude of other periodic w
dows with longer periods exist inside the synchronizat
region; however, these windows should be rather narrow;
can hope that as long as the mapping for the variablex is
well approximated by the unimodal map, the measure of
parameter values corresponding to chaotic motions rem
positive.

FIG. 5. Domain of phase synchronization forr 5210. The
dashed curve encircles the region of periodic dynamics.
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Except for these windows, the remaining part of the p
rameter plane is occupied by the chaotic states, phase
chronized and nonsynchronized.

The phase dynamics is illustrated by the Poincare´ map-
ping; along with the coordinatesx and y inherited from the
autonomous case, an appropriate variable for this mappin
the phasef of the external force at the moments of th
intersection of the orbit with the secant planez5r 21. In a
nonsynchronized state the values of the phase are scat
over the whole range between 0 and 2p. In the synchronized
regime, on the contrary, they are localized in a relativ
small interval, and the attractor for the mapping appear
be a narrow stripe. Attractor projections presented in Fig
correspond to the monotonic increase of the frequencyV
under the fixed amplitude; they demonstrate the transi
from the nonsynchronized state@Fig. 6~a!# to the synchro-
nized attractor@Fig. 6~c!# and subsequent breakup of sy
chronization@Fig. 6~e!#. In the intermediate stages@Fig. 6~b!
and Fig. 6~d!# just outside the region of phase synchroniz
tion we observe the weak diffusion of the phase: its val
stay in the localized domain for most of the time, but af
several thousands of iterations they leave it and drift upwa
~or downwards! to the identical stripe located 2p higher~re-
spectively, lower!.

Let us interpret the dynamics of phase in terms of perio
orbits. In Fig. 6~c!, the attractor is presented together w
unstable periodic orbits up to the length of 14; for conv
nience, we also show the identical attractor whose phas
shifted by 2p. As can be seen, the attractors are hemme
by periodic orbits~shown by the circles!; these are the phase
stable orbits. The phase-unstable orbits~shown by the
crosses! are located halfway between the attractors; app
ently, they lie on the border which separates the attrac
domains.

The individual locking regions for several relatively sho

FIG. 6. Dynamics on the Poincare´ surface forr 5210, E53: ~a!
V524.8, ~b! V524.877, ~c! V524.94, ~d! V524.963, and~e!
V524.97. Circles and crosses in~c! denote, respectively, phase
stable and phase-unstable orbits.
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periodic orbits are shown in Fig. 7. We see that~except for
the windows of stable periodic behavior! the borders of the
phase synchronization domain well correlate with the b
ders of the Arnold tongues, and phase synchronization
observed for the parameter values under which most of
periodic solutions are phase locked. Only the shortest p
odic motions, those of the length 2, seem to play no role
the whole process; this can be ascribed to the fact@cf. Fig.
6~c!# that the phase-stable~phase-unstable! orbits of this pe-
riod appear to be lying outside the attractor~repeller!. A
similar phenomenon when certain periodic orbits under
action of the external force leave the bulk of the chao
attractor has been previously reported for the forced Ro¨ssler
equations@14#. Note also the cusp point on the right bord
of the Arnold tongue for one of the orbits of length 10:
owes to the transcritical bifurcation in which two orbits
this length from different Arnold tongues participate; th
event, noteworthy by itself, seems to have no effect on ph
synchronization.

IV. r 528: IMPERFECT PHASE SYNCHRONIZATION OF
THE LORENZ ATTRACTOR

The picture of phase synchronization atr 528 differs no-
ticeably from the one reported in the preceding section. T
reasons for this can be traced back to the autonomous
E50. In the absence of force, we have the familiar Lore
attractor@24# @Fig. 1~b!#. It is well established that the sadd
point located at the originx5y5z50 belongs to the closure
of the attractor. The influence of this fact on the dynam
can be conveniently illustrated by means of return map
return times. Strong contraction effectively reduces the tw
dimensional mapping on the Poincare´ plane z5r 21 to a
nearly one-dimensional~1D! one ~the transverse Canto
structure of the 2D map appears to be of no importance
our purposes! which maps two curves onto themselves. I
troducing the appropriate coordinate along these curves~see,
e.g., @44#! one arrives at the discontinuous mapping of t
line onto itself; the discontinuity corresponds to the inters
tion of the Poincare´ plane by the local stable manifold of th
saddle point. The orbits which belong to the local sta
manifold never return back to the secant surface, and
orbits which cross the Poincare´ plane near the trace of thi
manifold hover for a long time in the vicinity of the origin
Owing to this, the time required for one turn on the attrac
is not bounded from above; as a function of the mapp

FIG. 7. Phase-locked regions for individual periodic orbits ar
5210. Dark gray area: domain of phase-synchronized chaotic
namics. Light gray area: stable periodic states.
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PRE 60 6633PHASE SYNCHRONIZATION IN THE FORCED LORENZ SYSTEM
coordinate, it diverges logarithmically when approaching
discontinuity~Fig. 8!.

To a certain extent this is compensated by the geometr
attractor: after hovering near the origin, the trajectories
reinjected close to the unstable saddle-focus points@x5y5
6Ab(r 21), z5r 21# where the rotation is especially fas
so that typically a slow turn is followed by a sequence
relatively rapid ones.

To get an idea of the distribution of characteristic times
the nonforced system, we located all its unstable perio
orbits up to the length of 19. The distribution of individu
frequencies for these orbits is shown in Fig. 9.

We observe that~unlike the case ofr 5210; cf. Fig. 3! the
span between the highest and the lowest values of individ
frequencies chosen among all the orbits of the lengthl grows
with the increase ofl. The growth of the maximal value ofv i
is limited from above. The highest frequency of rotations
the phase space appears to be attained near the saddle
points; it is bounded by the imaginary part of the comp
eigenvalues of the Jacobi matrix at these points which,
the parameter employed, equals 10.1945 . . . . However this
value remains unreachable for periodic trajectories: since
saddle foci lie outside the attractor, periodic and chaotic
bits pass at a finite distance from them. In the course of t

FIG. 8. Return time at the Poincare´ surfacez5r 21, r 528.
Two branches correspond to the two lobes of attractor.

FIG. 9. Individual frequencies of periodic orbits atr 528. The
mean frequencyva of autonomous chaotic motion is shown by th
solid line.
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evolution, an orbit can make only a finite number of sub
quent rotations around one of the saddle foci before slow
down and leaving for the other half-space~according to@44#,
this number forr 528 does not exceed 33!.

A bit surprisingly, due to the mentioned compensati
effect, the upper branch in Fig. 9 corresponds precisely to
orbits which come on the nearest to the origin and, hen
experience the strongest slowdown: as seen in Fig. 10, s
an orbit of lengthl makes a single turn in the half-spacex
.0 ~or x,0) andl 21 turns in the half-spacex,0 ~respec-
tively, x,0).

Regarding the minimal value ofv i for the periodic orbits,
the following argument shows that it can lie arbitrarily clo
to zero. It is known that the values ofr which correspond to
the formation of secondary~multiturned! homoclinic orbits
are dense in the range 24.06,r<33 @44#. Consequently, ar-
bitrarily close tor 528 one can find homoclinic explosion
from which the new unstable periodic orbits are created;
to proximity to the corresponding bifurcation points, the p
riods of these orbits atr 528 can be arbitrarily large and
hence, their frequencies arbitrarily low. However, the ve
same proximity to bifurcation points makes these orbits
tremely unstable and, thereby, hardly relevant for the dyna
ics on the attractor. Near the bifurcational valuer 0 corre-
sponding to the homoclinic explosion, the characteris
multiplier responsible for the instability is proportional t
(r 2r 0)n wheren5(lu1ls)/ls is a combination of the un-
stable eigenvaluelu and the least stable eigenvaluels of the
fixed point at the origin@45#. Linearization of the equations
under the employed parameter values yieldsn5(49
23A1201)/16'23.44. Correspondingly, the positiv
Lyapunov exponent of this periodic orbit~which is simply
the logarithm of its characteristic multiplier! scales asn ln(r
2r0) and diverges atr 0. Since the weight of the contribution
of an unstable periodic orbit to chaotic dynamics is invers
proportional to the Lyapunov exponent of this orbit@30,39#,
it is obvious that close to the homoclinic explosion such
contribution is negligible. Besides, our calculations sh
that in the interval 27,r ,29 the first 26 symbols in the
symbolic itinerary of the unstable manifold of the origin@44#
do not change; accordingly, homoclinic bifurcations with t
number of turns smaller than 25 do not occur inside t
interval; consequently, the periodic orbits with anomalou

FIG. 10. Unstable periodic orbit of length 13 with the large
individual frequency.
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low frequencies which can be met there, should have la
lengths.

We can conclude that the band of individual frequenc
for the periodic orbits with short and moderate lengths
bounded both from below and from above. Neverthele
variation in the frequencies is remarkably large: the diff
ence between the highest and the lowest marks exceeds
of the mean frequencyva58.365 . . . @the latter value is
obtained by applying the expression~3! to the chaotic trajec-
tory averaged over the length ofN5107 turns#. Taking into
account the broad scattering of the typical times of the s
tem, it is intuitively clear that synchronizing all of them by
weak external forcing is not an easy task.

To check for phase synchronization, we use the same
terion as in the preceding section: the difference between
mean frequencyv on the attractor and the frequencyV of
the driving force. Fixing the forcing amplitudeE we scan the
range of the values ofV searching for vanishing or nearl
vanishing values ofv2V. Typical results are presented
Fig. 11; here,E510. From the first view, the horizontal pla
teau seems to indicate to the perfect phase synchroniza
However, a closer look~cf. the inset in Fig. 11! shows that
the plateau is, first, not exactly horizontal, and, second,
at a small but finite distance above zero. The latter circu
stance cannot be attributed to insufficient statistics cause
the low number of orbit turnsN: the estimates fromN
5106 andN5107 as plotted in the inlet, match pretty wel

Similar results are obtained for other values of the driv
amplitude~Fig. 12!. For each fixed value ofE.2 there ap-
pears to be an interval of values of the driving frequen
aroundva in which v2V as a function ofV is nondecreas-
ing or decreases very weakly.

These ~not always horizontal! plateaus can be locate
above zero (E,14) or below zero (E>14), but invariably
close to it: in each of them the value of«[uv2Vu/V is
everywhere smaller than 0.01. Numerical observations in
cate that here the trajectory can be separated into altern
synchronized and nonsynchronized segments, so tha
phase follows the phase of the driving phase in the form
and departs from it in the latter. In the rough assumption t
each new 2p increment of the phase difference is gain

FIG. 11. Difference between mean frequencyv and driving
frequency V estimated from 106 ~solid circles! and 107 ~open
circles! turns of chaotic orbit;r 528, E510.
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within a single nonsynchronized turn of the orbit, the val
of « provides a ratio between the number of nonsynch
nized turns,Nn , and that of the synchronized turns,Ns :
u«u>Nn /Ns . The smallness of« inside the plateaus confirm
that the synchronized segments prevail within a single c
otic orbit. This permits us to view the corresponding states
‘‘nearly’’ synchronized; delineating the region of plateaus
the parameter plane, we obtain the domain of imperf
phase synchronization. Naturally, owing to a certain ar
trariness in determination of the plateau end points, the b
ders of this domain are somewhat fuzzy.

Again, the dynamics of phase is captured by the Poinc´
mapping. Unlike the case of the previous section, the m
ping attractor never resembles a stripe which is localized
the phase variablef. Let us fix a value of the forcing am
plitude and traverse the region of imperfect synchronizat
by increasing the value of the driving frequency. Along th
line in the parameter space, the attractor exhibits the tra
formation from a diffuse cloud@Fig. 13~a!# into reasonably
well outlined patterns of Figs. 13~b! and 13~c! and further
into a diffuse set depicted in Fig. 13~d!. In the most ordered
pattern@Fig. 13~c!# one can distinguish the heavily populate
central region~which spreads over approximately half of th

FIG. 12. Plateaus of imperfect phase synchronization for diff
ent amplitudes of external force.

FIG. 13. Attractors of the Poincare´ mapping atr 528, E510:
~a! V57.5, ~b! V58.3, ~c! V58.35, and~d! V58.5.
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PRE 60 6635PHASE SYNCHRONIZATION IN THE FORCED LORENZ SYSTEM
phase range! and the sharp and relatively dense ‘‘whisker
as well as the surrounding cloud in the border regions. A
parently, in the course of evolution the system spends m
of the time in the central region; from time to time it drif
along the whiskers to the identical pattern which is shif
along the phase by 2p. Further, we will attempt to interpre
this dynamics with the help of the information about t
embedded periodic orbits.

Similarly to the caser 5210, we have located on the pa
rameter plane the main Arnold tongues for individual pe
odic orbits~Fig. 14!. In the autonomous system the numb
of periodic orbits of the lengthl rapidly grows with the in-
crease ofl: there are such 224 orbits withl<10; even taking
into account the mirror symmetry of the system due to wh
all periodic orbits with odd length and most of those w
even length have symmetric twins, these orbits still deli
116 different main Arnold tongues. Presenting all of the
within a single plot hardly makes sense. We show only
principal phase locking regions which correspond to typi
periodic orbits at the left and the right ends of the frequen
band; as long as the forcing amplitude remains moderate
rest of the main Arnold tongues appears to be lying betw
the plotted ones.

According to the results presented in Fig. 14, there i
large domain on the parameter plane in which all~or nearly
all! main Arnold tongues overlap. Following the discussi
in the preceding sections, one would expect to observe in
domain the state of perfect phase synchronization. Howe
this is not the case, and even the states which we deno
imperfectly synchronized occupy only a part of the overla
ping region. It appears that to determine only the main
nold tongues is insufficient for the explanation of the ent
picture; some additional information is apparently require

Let us follow the temporal development of difference b
tween the phase of the system and the phase of the ext
force. As can be seen from Fig. 15, this difference plot
against time resembles a staircase in which the relativ
long horizontal ‘‘stairs’’ alternate with short jumps.~We
plot, in fact, the phase difference divided by 2p or, in other
words, the difference between the number of intersecti
with the Poincare´ plane and the number of periods of exte
nal force.! The entire plotted interval contains 16 000 orb
turns.

Each stair corresponds to a segment of synchronized
tion ~minor oscillations around the horizontal line are caus
by our arbitrariness in the choice of the Poincare´ surface;

FIG. 14. Main phase-locked regions of individual periodic o
bits; r 528. Gray domain: region of imperfect phase synchroni
tion.
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they compensate each other in the net effect!, and the jumps
between the stairs look like occasional phase slips. At
starting point the system and the driving force are assig
the same phase value; within the first stair they remain
phase; within the second stair the driving force has a ph
lag of 2p or, in other words, of one period; within the thir
stair the time lag equals two periods of external force, and
on. In the course of long-time evolution, we observe not o
2p but also 4p jumps; the latter are, however, much mo
seldom. Noticeably, each jump upwards is preceded b
short local decline downwards; this indicates that imme
ately before the jump the phase trajectory rotates relativ
slow.

Let us now zoom in on the vicinity of a typical jum
~inset of Fig. 15!. Here, the crosses denote the moments
intersections with the Poincare´ surface; between them, th
phase of the trajectory is approximated by linear interpo
tion. We observe that what seemed to be an instantane
phase slip proves to be a kind of phase drift, a process
noticeable duration: a transition between two stairs requ
not fewer than a dozen turns of the orbit. In the tempo
pattern of the transition one sees a remarkably long-time
terval between two intersections of the Poincare´ plane in the
very beginning of the transition process; this interval is p
duced by a very slow orbit turn. This slowing down is fo
lowed by several very short intervals; they not only ena
the system to compensate the local phase lag accumu
during the slow motion, but even catapult it upwards to t
next stair. The whole picture reminds us of the unstable
riodic orbits which belong to the upper branch of the fr
quency distribution displayed in Fig. 9, with their slow pa
sages near the saddle origin and subsequent rapid rota
around the saddle foci. The high individual frequencies
these orbits by far exceed the average frequencyva58.365;
consequently, not only their main locking regions are r
evant, but also certain secondary Arnold tongues can b
importance.

Take a periodic orbit which consists ofl turns and has in
the autonomous case the individual frequencyv i . For l suf-
ficiently high, the value@( l 21)/l #v i ~which corresponds to
the situation when the orbit closes not afterl but after l 21
periods of the external force! also lies inside the band o
individual frequencies, and the corresponding Arnold tong

-

FIG. 15. Temporal development of difference between phase
the driven system and the driving force in the state of imperf
phase synchronization.E510, V58.3; crosses denote intersection
with Poincare´ surface.
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can be of relevance. Formally, this may hold for any f
quency distribution, but in the case of a narrow frequen
band the value ofl should be rather high~for the nearly
monochromatic attractor from Sec. III one would requirel
.500), and the chance to stay long enough near the v
long unstable periodic orbit is negligible. On the contrary,
the case ofr 528 this phenomenon can be detected alre
for l 512 ~the estimate is based on the values ofv i of the
autonomous system; since the Arnold tongues in the for
system have finite width, the actual values ofl may be
slightly lower!. For most of the time the trajectory on th
attractor wanders between unstable tori whose phase-s
orbits are directly locked to the frequency of the drivin
force, but now and then it visits neighborhoods of tori who
frequencies are locked in a ratio (l 21)/l . During these vis-
its, the phase of the orbit grows faster than that of the ex
nal force; by the time when the trajectory is bounced bac
total gain of 2p is reached. Similarly, the phase gains of 4p
can be interpreted as rare passages of a chaotic traje
near the periodic orbits locked in the frequency ratiol
22)/l ; in our case, these orbits should have a lengthl>21.

The described phenomenon is a ‘‘masked’’ form of pha
synchronization: the observed gains~or losses! of the phase
do not result from instantaneous phase slips. Although
differencev2V does not vanish in this state, the motio
remains synchronized for all the time, but synchronized
different frequencies.

As an example we take an orbit of length 13 which mak
one slow turn in the half-spacex.0 and 12 fast turns in the
half-spacex,0 ~cf. Fig. 10!; its individual frequency in the
autonomous system equalsv i58.925 918 . . . . Besides the
main Arnold tongue emanating fromv i , the other locking
region is of apparent interest for us: it corresponds to
situation in which the periodic orbit is closed after 12 perio
of external force. This secondary Arnold tongue has its tip
the point (v512/13v i58.239 367 . . . ,E50), and lies
much closer tova . Therefore we can expect that in the ran
of frequency values corresponding to plateaus of Fig. 12
considered unstable periodic orbit is locked by external fo
in a ratio 12:13. A passage of a chaotic trajectory near
synchronized orbit would cause a net phase gain of 2p and
result in a transition to a higher stair in a plot of Fig. 15.

In Fig. 16 we present two described Arnold tongues

FIG. 16. Main locking region~right! and the region of locking
12:13~left! for the periodic orbit of length 13. Gray domain: regio
of imperfect phase synchronization.
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the periodic orbit of length 13. As can be seen, the tong
overlap atE>4.68; the adjacent area in the parameter pla
belongs to the region in which imperfect phase synchron
tion is observed. In this parameter domain we detect
coexistence of two different phase-stable periodic orb
both of which stem from the same unstable periodic solut
of the autonomous system. One can expect that in the co
of sufficiently long evolution a chaotic trajectory will visi
the neighborhoods of both orbits; in one of these neighb
hoods it will keep pace with the phase of external forc
whereas in the other it will eventually run 2p ahead of it.
Notably, two periodic orbits with different winding number
cannot be simultaneously placed onto a surface of a sin
two-torus~produced by action of the forcing from the ‘‘pa
rental’’ periodic solution of the autonomous system!; this
implies that already the moderate amplitudes of forcing c
cause a breakup of invariant tori.

To provide a geometric illustration of the described ph
nomenon, we plot in Fig. 17 the attractor of the Poinca´
map on the secant plane. The marked points denote the
stable periodic orbits of the lengthl for l 513, l 514, andl
515 which are frequency locked in the ratio (l 21)/l . It can
be seen that these points can be found both in the bulk of
attractor and in the ‘‘whiskers.’’ The chaotic orbit whic
approaches one of such orbits inside the bulk makes wit
an excursion downwards along the whisker and is tra
ported into the bulk of identical pattern which is shifte
alongf by 2p.

Now we can interpret the origin of short nonflat platea
in Fig. 12 as the complicated interplay between the m
Arnold tongues of relatively short periodic orbits and t
secondary locking regions of occasionally visited longer
bits. When the driving frequencyV is increased from the
low starting value, the motions on the tori born out of sh

FIG. 17. Periodic orbits and the attractor in the state of imp
fect synchronization. Dots, chaotic trajectory; crosses, periodic
bits locked in the ratio 12:13; circles, periodic orbits locked in t
ratio 13:14; triangles, periodic orbits locked in the ratio 14:15. A
rows show the direction of motion along the orbit.E510, V
58.3.
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PRE 60 6637PHASE SYNCHRONIZATION IN THE FORCED LORENZ SYSTEM
orbits are not yet locked in their main Arnold tongues, a
the frequency of rotations near these tori is larger thanV. In
this parameter range the secondary lockings for longer or
can be encountered; since their locking ratios are sma
than 1, the frequencies of locked motions upon them a
exceedV. Altogether, this ensures that the inequalityv
2V.0 holds. Further, we enter the parameter region
which most of the short orbits have their main Arno
tongues. As soon as we reach the values ofV at which the
motions near the locked short orbits dominate, the state
imperfect phase synchronization is observed. Formally,
can writev5kV where the factork is a ~not everywhere
differentiable! function of V; k remains constant inside th
small intervals ofV in which no crossings of the tongu
borders occur. Due to the contribution of secondary lockin
in this parameter range one hask(V).1; hence inside such
intervals the functionv2V5V(k21) is increasing; this
explains the nonmonotonicity of synchronization plateaus

Finally, in the course of an increase ofV, we cross one by
one the right boundaries of both the main and the secon
Arnold tongues. In the vicinities of the respective just-o
of-locking tori, the phase of a chaotic trajectory grow
slower than the phase of the driving force. As a conseque
the rare segments of drift downwards start to appear in
time dependence of the difference between these pha
These shifts downwards eventually balance~cf. Fig. 18!, and
finally exceed the effect of rare shifts upwards caused by
surviving secondary tongues; this marks the end of the
gion of imperfect synchronization.

V. DISCUSSION

The ‘‘imperfections’’ in phase synchronization which w
have discussed in the previous section do not signify
breakdown of synchronized state. Although the formal c
dition V5v does not hold, the system appears to be ph
locked all the time, but the values of locking ratios altern
in the course of chaotic evolution. A similar phenomenon
nonconstant locking ratios in phase synchronization has b
recently detected in the experimental data describing hu
cardiorespiratory activity@46,47#. There the switchings be

FIG. 18. Temporal evolution of difference between phases
the driven system and the driving force:r 528, E514, andV
58.25. The plotted segment corresponds to 63104 turns of the
orbit.
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tween the ratios are apparently owing to the influence
noise and to the nonstationarity of the process. Our res
imply that alternation of locking ratios can also take place
a completely stationary deterministic setup, under the pro
sion of the broad distribution of return times.

In the first lines of this paper, we have interpreted sy
chronization as the adjustment of coupled subsystems.
justment is tantamount to introducing some kind of ord
into the dynamics: all known forms of chaotic synchroniz
tion are known to decrease the degree of chaoticity. G
metrically, synchronization manifests itself in the reducti
of dynamics from the entire phase space onto some attrac
invariant hypersurface; in the case of complete synchron
tion this is an explicitly given symmetrical hyperplan
whereas in the case of generalized synchronization the
face is determined by the functional interrelation between
leading and the led subsystems. The case of phase syn
nization is less transparent, owing to the hardly avoida
ambiguities in the definition of the phase. Nevertheless,
can be seen from the comparison of Fig. 6~a! and Fig. 6~c!,
there is no doubt that the portion of phase space occupie
the attractor in the perfectly synchronized state is mu
smaller than in the absence of synchronization. The m
sured phase of the system, being adjusted to the phase o
driving force, does not follow it minutely, and the attractor
Fig. 6~c! remains a stripe of a finite width which does n
shrink into a curve. The loose relation between the pha
defines the geometry of the attracting ‘‘fat’’ hypersurfac
For the case of imperfect phase synchronization, howe
the picture seems to be more complicated. In the temp
evolution the prevailing long segments of frequency locki
1:1 are interrupted by short time intervals in which the fr
quencies, albeit rationally locked, do not coincide. Ea
locking defines its own invariant ‘‘hypersurface’’; accord
ingly, in the phase space the trajectory moves for a long t
along one~‘‘main’’ ! surface, for a short time leaves it an
makes an excursion along the other surface, and so on.
already mentioned fact that phase is usually a ‘‘hidde
variable makes especially difficult a proper characterizat
of this unconventional ordered state, either through rec
struction of the underlying invariant geometric structures,
by other means; the corresponding methods require fur
elaboration.

Another problem which deserves attention in this cont
is the breakup of unstable tori under the increase of the fo
ing amplitude, and the consequences of this breakup for
phase synchronization. Further, unstable periodic orbits
autonomous systems can have structurally stable homoc
and heteroclinic orbits; the effects of periodic perturbation
respective homoclinic structures~for example, existence o
additional connections between phase-unstable and ph
stable orbits in the locking regions! demand a special inves
tigation. These fine aspects remain outside our current
scriptive approach; however, their elucidation by means o
more rigorous analysis can add new important details to
understanding of the synchronization phenomena.
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