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Phase synchronization in the forced Lorenz system
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We demonstrate that the dynamics of phase synchronization in a chaotic system under weak periodic forcing
depends crucially on the distribution of intrinsic characteristic times of this system. Under the external periodic
action, the frequency of every unstable periodic orbit is locked to the frequency of the force. In systems which
in the autonomous case displays nearly isochronous chaotic rotations, the locking ratio is the same for all
periodic orbits; since a typical chaotic orbit wanders between the periodic ones, its phase follows the phase of
the force. For the Lorenz attractor with its unbounded times of return onto a Poswdaee, such state of
perfect phase synchronization is inaccessible. Analysis with the help of unstable periodic orbits shows that this
state is replaced by another one, which we call “imperfect phase synchronization,” and in which we observe
alternation of temporal segments, corresponding to different rational values of frequency lockings.
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[. INTRODUCTION with chaotically modulated amplitude. This usually holds for
the attractors originating from the sequence of period-
Recent years have witnessed a strong increase of interegbubling bifurcations, such as one of the prototypic low-
in different manifestations of synchronization in various dimensional chaotic systems: the Ster attractor. A rela-
physical, chemical, and biological environments. Synchronitively weak periodic force applied to such a system can
zation is commonly understood as adjustment of the states @fpose its rhythm on the rotations without destroying the
coupled systems. In the case of a strong coupling the motionsrratic nature of the motion: although the returns onto the
in different subsystems can completely mimic each other; ®@oincaresurface are adjusted to the period of the force, the
weaker coupling can adjust typical time scales of the couple¢éhapping of this surface onto itself, induced by the flow,
systems without achieving the full coincidence between theifemains chaotic. Since the temporal characteristics of rota-
states. In its traditional form conceived over three centuriegigns are their phase and frequency, this form of synchroni-
ago [1], synchronization refers to ensembles (6o and  ,ation is called “phase synchronizatior11].
more periodic oscillators with slightly different individual There are several ways to extend the notion of the phase
frequencies; here, the weak coupling drives the individua|n order to enable its usage in the context of chaotic pro-
frequencies together or, in general, makes them COMMENSHesses. Since the phase usually is not available as a direct

rable[2,3]. In the last decade, when the focus of the researC%bservable, some operational definition is necessary, which

has moved to chaotic phenomena, the notion of synchronize\would allow one to reconstruct it from the experimental or
tion has been successfully generalized for chaotic oscillators, : . . P .
umerical data. It is natural to require that the properly in-

Here one can distinguish several stages of synchronizatiof, . . o
Thus, the complete synchronizatidar, in a modified ver- troduced”phasg as a _functlon of time should grow “on the
sion with unilateral coupling, “master-slave” synchroniza- average, an.d Its net |ncremeqt between gach two consecu-
tion) refers to the situation when two identical nonlinear sys-live intersections of the orbit with the Poincastane should
tems are coupled: irrespective of the difference in initialP€ close to a constartit is often convenient to scale this
conditions, after a certain transient, their states converggonstant to Zr or 1). One of the commonly accepted meth-
[4-7]. In a more general case, the state of the led systerids to visualize the phase is to consider the “analytic sig-
becomes a function of the state of the leading 6lgener-  nal” introduced by Gabof12], and to decompose a time
alized synchronization’[8—10]). series into the instantaneous phase and instantaneous ampli-
A weaker form of synchronization which does not requiretude by means of the Hilbert transform. In certain situations,
that one of the coupled systems follow the evolution of thedue to the geometry of the attractor, rotations are clearly
other one is restricted to the adjustment of intrinsic timevisible on phase portrait projections; this prompts a simpler
scales. The natural time scale which characterizes a dynamghoice: given the “rotation center,” we view the phase as a
cal process is the time which a system requires for an apime-dependent angular polar coordinate on the phase plane.
proximate return to its initial state. In terms of the motion in Perhaps, the most straightforward and crude approach would
phase space this characteristic is given by the interyal be to define the phase by prescribing its values at the mo-
between the two consecutive returns of the chaotic trajectorgnents of the intersection of the orbit with the Poincaue-
onto an appropriate secant surf@Peincaresurface. In gen-  face. Let us assign the valuer2o the phase increment after
eral, these intervals vary over the attractgy; is a function  each turn. If now we admit the linear interpolation between
of coordinates on the Poincaptane; however in many cases the intersection moments, the phase is rendered as a mono-
the variation is small compared to the valuergf itself, and  tonic piecewise-linear function of time: lgt be the moment
the chaotic motion can be viewed as a nearly regular rotationf the kth intersection of the orbit with the surface of section;
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then for ty,<t<t,,, the phase is simply®(t)=27k  the active interference into dynamics: one can control chaos

+2m(t—t )/ (ter 1= th)- [37] by adding small local perturbations which stabilize the
For practical purposes of synchronization, all these defiotherwise unstable periodic motions.
nitions of phase appear to be equally applicdilg]. Given The Lorenz attractor which possesses an infinite number

the phase, the mean frequency of the chaotic motion is intrg0f periodic solutions with two-dimensional unstable mani-

duced as the mean growth rate of the phase, averaged oélds has been several times analyzed by means of unstable

the attractor. periodic orbits[38,39. Characterization of the Lorenz sys-
Below, we focus on the onset of synchronization in peri_tem in terms of these orbits has certain peculiarities. For

odically driven chaotic systems; this situation may be viewed"2" dynamical systems, tracking only several relatively
as a particular case of unilateral coupling in which the driv_short unstable periodic orbits seems to be sufficient in order
ing subsystem performs periodic oscillations whereas thi0 obtain a good approximation to the properties of the_ at-
driven one exhibits chaotic behavior. Under the action of thé'actor[40l. However, in systems close to the attractor crises
periodic force, the typical time scales of the chaotic attract0|(°f which the Lprgnz attractor is a gqod exammeme_ef— .
can get adjusted to the imposed period of oscillations. It idects becpme .V'S'ble pnly when one investigates orbits with
natural to expect that in the synchronized state the phase Hogre?_snéelr)]/ mcr:easmg Iengﬁhfl,ﬁﬂ.b dband of ch

the chaotic motion would follow that of the driving force; We find that the presence of the broadband of character-

correspondingly, the forcing frequency should coincide withistic times brings new features into synchronization-related

the mean frequency of the chaotic observable. This phenonp_henomena. Accordmg to our results, in such systems it
ceems impossible to achieve the state of perfect phase syn-

enon has been documented for driven systems whose chatci‘(he - ation f hich the £ th ving f
acteristic times are confined within a relatively narrow rangechronization for which the frequency of the driving force
(see, e.g.[14,15). would identically coincide with the mean frequency on the

one often encounters continuous dynamica?ttracmr' We observe that during the chaotic evolution long

systems in which the band of characteristic times is rathep€9ments of perfec_tly syr_lchromzed motion alternate W!th
broad or ever(semidinfinite; the latter happens, e.g., when short segments during which the external force lags behind

the closure of a chaotic attractor contains fixed points of thd1® chaotic rotations. A closer look shows that the latter
saddle type. In this case diverges near the local stable events corres_po_nd to fche passage of _the trajectory near cer-
manifold of the saddle point. Situations in which the unstabld@in 10ng periodic orbits. A detailed investigation demon-

steady statesimaged in the phase space by saddle piDintsStr"’Y[e.S that even at this_sta_lge the system remains phas_e syn-
play an important role in dynamics are widely spread inchronlzed, however, this is a “masked” synchronization

finite-dimensional truncations of the equations of nonlinearcaused by higher resonances: the frequencies do not coincide

optics(Raman scatterinfL6], lasers with saturable absorbers PUt r€ commensurate.

[17], optothermal devicegl8]), thermal convection in cer- The layout of our paper is as follows. In the next section
tain configuration$19—21, or reductions of the weakly dis- we describe the system under investigation and introduce the

sipative one- and two-dimensional complex Ginzburg-Main characteristics to be computed. Further, we provide a

Landau equation near the boundary of the modulationalPrief general survey of phase synchronization in terms of

instability [22,23. The best known example is provided by unstable periodic orbits. Section Il presents the bifurcation
the Lorenz attractof24]: here, in the course of chaotic evo- diagram for the case when the return times on the attractor

lution the relatively fast rotations around the unstable focag:e confined within a narrow intervéthe parameter of the

points in phase space alternate with slowing down and lonfO€NZ equations equals 210'he results displayed in Sec.
hoverings near the saddle point. refer to the forced system at=28; here we describe the

In this paper, we consider the externally driven LorenzChang_eS _vvhich are introduced into _the picture of phase syn-
system in order to investigate the influence of unboundedhronization by unbounded return times.
return times on details of phase synchronization. For com-
parison, we take two sets of parameters, the first one describ- II. DRIVEN LORENZ EQUATIONS: PHASE AND
ing the “canonical” Lorenz attractor containing the saddle PERIODIC ORBITS
point [24] and the second one corresponding to a qualita-
tively different kind of an attractor with narrow distribution force. The dynamics of dimensionless variableg z is gov-

Of Tret- .
. . N .erned by the equation
We intend to describe the synchronization phenomena in y quations

terms of unstable periodic orbits embedded into a strange

However,

We consider the Lorenz systd@4] driven by an external

attractor. These orbits constitute a kind of a *“skeleton” for x=0o(y=x),

chaotic set$25], and knowledge of their properties allows us .

to resolve many fine details of an attractor in terms of the Yy=IX—y—Xz, (1)
cycle expansiorf26—29, to compute its fractal dimensions

[30], etc. Unstable periodic orbits have been widely ex- z=xy—bz+E cogQt),

ploited in the context of chaotic sets in mappings and flows;

they provide a helpful tool for analyzing experimental datawherec, r, andb are the original Lorenz parameters, and the
[31-39; recently the algorithms were elaborated to recoverimensionless amplitude and frequency of the external force
them in numerical solutions of the partial differential equa-are denoted b¥ and(}, respectively. To preserve the char-
tions [36]. Finally, knowledge of these orbits allows us to acteristic mirror symmetry of the equations, the forcing term
proceed from the passive observation of chaotic process tg applied to the third variable. We fix the “canonical24]
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whereN(T) is the number of turns performed in the tifig
or, conversely, as

i 27N 3

20 o= 1M —-,

N T (N)

0 : : : whereT(N) is the time required to completé turns. Natu-
-20 -10 0 10 20

rally, the details of the phase evolution within a single turn
cannot be captured by such a crude construction; the price
FIG. 1. Chaotic orbits of Eq(1) for (a) r=210 and(b) r=28.  which we pay is an inaccuracy i bounded by+ 2= and,

Dashed line: location of the Poincasarfacez=r—1. respectively, an error in the estimate @fbounded by the
value * w/N.
parameter values =10 andb=8/3. As for the parametar, Along with the averaged characteristics, we should also

we take two values which correspond in the autonomou@ITOduc? quantities V\(hich characterize every partipulgr per.i—
system to two qualitatively different types of a chaotic attrac-Od'_C orbit embedded into the attractor. For the periodic orbit
tor [Figs. 1a and 1b)]: the nearly isochronous one and the Which closes after the tim&, and consists oNg turns(fol-
strongly nonisochronous one. We expect that the differencl®Wing [14], we call this integer number the “orbit length”
in the distribution of intrinsic time scales should influence ©F SIMply “length”) its individual frequency is provided by
the way in which the system reacts to the synchronizing ac&ny of the expression&) and (3) without the necessity to
tion of the external force. take the limit:
In the first case =210, we do not foresee particular dif-
ferences from the earlier studied example of the forced
Rossler systenil4]; it serves as a convenient illustration of
metamorphoses in phase space which accompany the phase = i ,
synchronization. The second case, the classical Lorenz at- AN indispensable tool for studies of chaotic sets, unstable
tractor atr =28, is more complicated, since here the timePeriodic states have for our purpose yet another merit: each
between two consecutive intersections of the secant plane i theém can be viewed as an individual oscillator. Let us pick
a trajectory is, in principle, unbounded. In both cases thelP One of these solutl_ons and_cons_lder, first, the dynamics on
values of amplitude which we takeE€20 for r =28 and its g_lobal stable manifold. This br!ngs_ us back to t_he _weII-
E<10 forr =210) are small compared to the maximal val- Studied problem of the synchronization sfable periodic
ues ofdz/dt in the autonomous system-@350 and~ 3500, osc[llatlpns by externa! forcg. The introduction of periodic
respectively, and the introduced perturbations can peforcing increases the dmensmn an.d changes the topology of
viewed as relatively weak. the ph_ase space. Provided the forcing is W_eak en()ug_tch
Since we focus on phase synchronization, the phase of tHi¢ Will assume throughout our analysisan invariant
motion should be defined properly. There are several ways t9M00th torus evolves from the closed curve of the autono-

introduce the phasésee, e.g., the three definitionsipl]). ~ Mous chaotic system, and the orbits wind on this torus.
Insofar as we are interested in long-time effects, the details N Parameter space, phase entrainment is observed in cer-

within a single turn of the trajectory do not seem to be oft@in “locking” regions (the Arnold tongueswhich corre-
special importance. For this reason, we choose the simpleSPond to rational values of the ratio between the driving
and the most robust characteristics: as proposed in the Intréi€duency(2 and the individual frequency; of the consid-
duction, we infer the phase from the geometry of the orbit. [€€"€d periodic orbit. Usually, only the main tongue in which
is natural to assume that each new turn of the orbit should® frequencies coincide is of relevance for applications. In-
add 2 to the phasep. By the “turn” we denote the seg- side each Arn(_)ld tongue, there are two_closgd_ orbits on the
ment of the orbit between two consecutive intersections opurface of the invariant torus: the attracting dités natural

the suitably chosen secant surface. The latter can be selecticall it “phase stable) and the repelling on@espectively,

in several ways. In order to escape the ambiguity which mayP@se unstable); on the edge of the tongue these two or-
arise from the clockwise and counterclockwise rotations orPitS coalesce and disappear via the tangent bifurcation. Out-
the two opposite lobes of the Lorenz attractor, one carpld® the tongues the motion is not synchronized, and the
choose, e.g., the surface on whidwdt in the unperturbed trajéctories are dense on the torus. .
system vanishes. Following the original work of Loré@], Now let us leave the stable manifold of the individual

we take a different choice: we define the Poincgugface by periodic orbit and consider dynamics in the entire phase
the conditionz=r —1 and count the intersections at which SPace. On the parameter plane of the frequefilcgnd am-
dz/dt is negative. plitude E of the driving force, the main Arnold tongue ema-

Respectively, the mean frequencwhich is the mean nates from the poirE=0, (= w; . Naturally, the individual
time derivative of the phagat the attractor can be computed requenciesw; differ for different periodic orbits of the au-
through any of the two apparently equivalent expressionst.onomous systems; if they are close to each other, the main
either as Arnold tongues of these orbits overlap; moreover, a param-

eter region common to all these tongues can exist, in which
27N(T) the phases of all periodic _motions are locked to the_ph_ase of
o= lim ——~, 2) external force. If the forcing remains moderate, this is the

Too T overlapping region for the leftmost and the rightmost Arnold

27TNO
To

: 4

wi=
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tongues(they correspond to the periodic motions of the au- - . 0.55 . .
tonomous system with, respectively, the lowest and the high-, 4 _\_{ VR
est values ofw;). Since in the autonomous system each pe- Y
riodic solution is unstable, the corresponding torus in the;:? \

Tret
N
/

X , . ) Lo 05 7 ]
weakly driven system is also unstable. Chaotic trajectories in /
their motion over the attractor repeatedly visit the neighbor-13 [ x S /
hoods of the tori. Near a torus, the orbit approaches the re N (@) / (b)
spective phase-stable solution and moves along it before th: C—— 0.45 L L .

13 x 14 13 x, 14

“transverse” (amplitude instability repels it to another
torus. Inside the overlapping region, the phase-stable solu- FIG. 2. (a) Return mapping anéb) return time on the Poincare
tion on each torus is phase locked with the external force in - - L

o ._ .~ surfacez=r—1 for r=210 (two turns of the orbit in the phase
the ratio 1:1; therefore the perfect phase synchronization '§pace.
observed. Owing to the noncoincidence of Arnold tongues
for different periodic orbits, just outside the region of phase . . . .
synchronization the synchronized segments of the trajecto?.nCe of a pair of such orbits goes unnoticed from the point of
alternate with the nonsynchronized ones. This specific kind'€W Of the phase synchronization.
of intermittency has been called “eyelet,” because each es-

Finally, several words about the numerics employed: to
cape from the phase-locked state is caused by the very prg)_cate the periodic orbits, we use the Newton method in sev-
cise hitting of a neighborhood of a nonlocked tofd§].

eral variables. The periodic orbit is represented by a fixed
Since the characteristic multipliesigenvalues of the lin-  POINt of the Poincarenap; this map is two dimensional in the
earization of the Poincanmap near the fixed poinbf peri- autonomous case and three-dimensional for the driven sys-
odic orbits are readily available in computations, it can provet‘ham' ;O callcuLats on _the pr?rart]meter plan%the trJ]oundarles of
helpful to relate them to the phenomena which we expect t% e phase-locked regiorsvhich correspond to the tangent
observe in the course of our study. In the absence of a

ifurcation of periodic orbits we fix the driving amplitude
external force each periodic orbit has two multipliers. None2nd treat the frequency of the external force as the fourth
of these orbits is stable; this means that at least one of th

gnknown variable.
multipliers should lie outside the unit circle on the complex
plane. Simple arguments show that this multiplier is real; in |, | =210: SYNCHRONIZING ALMOST ISOCHRONOUS
the case =28 it is positive, and in the case=210 it can be ATTRACTOR
either positive or negative. The second multiplihich cor-
responds to the decaying perturbatipissalso real and lies At r=210 (as well as for the other values ofbetween
close to zero. When the system is driven by the external97.4 and 215.444]) the autonomous Lorenz equations
force, the dimension of the phase space is increased and dave two mutually symmetric chaotic attractors. Their attrac-
additional multiplier appears; under small amplitudes oftion basins in phase space are separated by the stable mani-
forcing it characterizes the adjustment of the own phase ofold of the saddle point which is located at the origin. The
the system to the phase of the external force. If the forcing i©rigin does not belong to either of the attractors; hence the
weak, the phase evolution is decoupled from the amplitudéimes between consecutive returns onto the Poinptare
dynamics, and all three multipliers remain real. Formally oneare bounded. We show one of these attractors in Kig. 1
may extend the description to the autonomous é&s®; in Due to strong transversal contraction, the trace of the at-
this case the system is nonsensitive to the external phase, tti@ctor on the Poincarsurface is nearly nondistinguishable
direction in the phase space corresponding to its change fsom the one-dimensional curve; consequently the two-
marginal (the torus is foliated into a continuum of closed dimensional mapping induced by the flow can be for practi-
curves, and the multiplier equals 1. As soon as a nonzerccal purposes replaced by the one-dimensional one. Further-
forcing is introduced, this degeneracy is destroyed; of all thenore, on this attractor the turrig the above sense of orbit
closed curves survive either twinside phase-locked re- segments between consecutive intersections with the Poin-
gions or one(on their boundari@sor none(outside the Ar-  careplang in the half-space>0 alternate with the turns in
nold tongues Inside a phase-locking region, the third mul- the half-space<0; after every two turns the orbit returns to
tiplier for the phase-stable orbit lies between 0 and 1, and fothe initial half-space. Therefore it is sufficient to consider the
the phase-unstable orbit it is larger than 1. one-dimensional mapping in one of the half-spagestu-

We expect that in the synchronized state phase-stable orally, keeping in mind that each iteration of this map corre-
bits build a skeleton of the chaotic attractor whereas theponds to two turns of the orhitSuch a mapping recon-
phase-unstable ones form a backbone of the repeller whicstructed numerically from thecoordinate of the intersection
separates in phase space the basins of equivalent attract@aints is presented in Fig(@. This proves to be a unimodal
shifted with respect to each other byrd43,14,19. On the  map reminiscent of the logistic mappimng-ax(1—x); com-
edge of the phase-locking region, two orbits coalesce angarison of symbolic itineraries for the extrema of the two
disappear; an eyelet gap appears in the barrier formed by thieappings shows that the dynamics observed in our system
repeller, and enables the phase drift with respect to the phaserresponds ta~3.8052 . .. . Thesecond part of the plot
of external force. Naturally, not all the periodic orbits are presents the return time as a function ok [Fig. 2(b)]. It
obliged to belong to an attractor or repeller; some of thentan be seen that variations gf; are quite moderate.
may lie in the region of phase space which is not visited by Since we are going to interpret synchronization in terms
trajectories from the attractor; respectively, the disappearef unstable periodic orbits, the distribution of the frequencies
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FIG. 3. Individual frequencies of periodic orbitsrat 210. The FIG. 5. Domain of phase synchronization for=210. The

mean frequencyw, of autonomous chaotic motion is shown by dashed curve encircles the region of periodic dynamics.
solid line.

. ) ] . ensure the synchronization. To check for the occasional
of these orbits(4) is of obvious importance. Not all of the phase slips, we magnify the part of this plot around the pla-
unstable periodic orbits existing in E(L) atr=210,E=0  teay; as seen in the inset, the differences between the com-
are embedded into the chaotic attractor; many of thieomn  pyted values and zero lie within the error estimate/N for
mostly from the homoclinic explosion at=13.926[44]) are
located in the other parts of the phase space and their indi- The coincidence of frequencies is a necessary condition
vidual frequencies are irrelevant in our context. As for thefor phase synchronization; it is not a sufficient one, since it
orbits belonging to the attractor, we have computed theigpes not exclude the weak phase drift which is slower than
frequencies until the orbit length 24. As can be seen from th@near in time. Numerical observations inside the plateau did
data plotted in Fig. 3, the distribution is nearly monochro-ot disclose any phase drift within 4Qurns of the orbit.
matic: the difference between the highest and the lowest frernis allows us to conjecture that the observed state is com-
quency is less than 0.2% of the mean frequency of the ausjetely phase synchronized. Varying the value of the forcing
tonomous chaotic motiom,=24.922 ... (the latter value amplitude, we determine on the plane of the parameters
is estimated from 10turns of a chaotic orbjt Therefore, andE the domain of phase synchronizatitfig. 5).
one can hope to synchronize the entire chaotic motion by By itself, the condition of vanishing-Q through which
applying a relatively weak periodic force with the frequencyye determine the state of phase synchronization provides no
close tow, . o ) information on the kind of synchronized behavior: it can be

To detect phase synchronization in the driven system, Wgoth chaotic and periodic. A closer look at the regimes ob-
have computed the difference between the mean frequenggrved inside this domain indicates that in certain parameter
of the observed chaotic motian and the frequency of the regions chaos yields to periodicity: there is a large window
driving force (). for the synchronized state this difference yith a stable periodic orbit which makes six turns in the
should vanish. The plot in Fig. 4 presenis() as a function  phase space; just outside this window stable orbits of 6
of 1 under a fixed value of the amplitudg the horizontal ~ x 2" turns can be encountered, and there is also a small
plateau corresponds to the interval of thevalues which  region with stable motions of length 14. The origin of these

periodic windows can be interpreted with the help of the
0.2 ; : : return mapping. We mentioned already that the one-
o108 L] "] dimensional mapping induced by the flow in the autonomous
system(recall that in obtaining this map only half of the orbit
01t 0 : turns countsappears to be equivalent to the logistic mapping
2x100 ¢ 1 ata=3.8052 ... .This value is remarkably close to tlae
a 249 2495 =1+.8=3.8281... which marks the lower boundary of
| 0 the period-3 window in the logistic mapping; the interval
8 3.77414a<3.774 45 corresponding to the period-7 win-
dow of the logistic mapping is also rather close. Apparently,
041t | weak perturbations introduced by the forcing deform the
mapping and can bring it across the boundary of periodic
behavior. We assume that a multitude of other periodic win-
s s - dows with longer periods exist inside the synchronization
24.8 2;"29 25 region; however, these windows should be rather narrow; we
can hope that as long as the mapping for the variahie

FIG. 4. Difference between mean frequensyand driving fre-  Well approximated by the unimodal map, the measure of the
quency Q for r=210, E=3. w is estimated from 10turns of  parameter values corresponding to chaotic motions remains
chaotic orbit. positive.
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FIG. 7. Phase-locked regions for individual periodic orbits at
=210. Dark gray area: domain of phase-synchronized chaotic dy-
namics. Light gray area: stable periodic states.

2r

periodic orbits are shown in Fig. 7. We see tkexcept for
the windows of stable periodic behavidhe borders of the
phase synchronization domain well correlate with the bor-
ders of the Arnold tongues, and phase synchronization is
observed for the parameter values under which most of the
periodic solutions are phase locked. Only the shortest peri-
FIG. 6. Dynamics on the Poincaserface for = 210, E=3: (a) odic motions, those of the length 2, seem to play no role in
0=2438, (b) 0=24.877,(c) 0=24.94,(d) Q=24.963, and(e) the whole process; this can be ascribed to the [fefctFig.
Q=24.97. Circles and crosses {n) denote, respectively, phase- 6(c)] that the phase-stablphase-unstableorbits of this pe-
stable and phase-unstable orbits. riod appear to be lying outside the attractoepelley. A
similar phenomenon when certain periodic orbits under the
Except for these windows, the remaining part of the pa-action of the external force leave the bulk of thg chaotic
rameter plane is occupied by the chaotic states, phase sy#ttractor has been previously reported for the forcedsin
chronized and nonsynchronized. equationg 14]. Note also the cusp point on the right border
The phase dynamics is illustrated by the Poincmap-  ©Of the Arnold tongue for one of the orbits of length 10: it
ping; along with the coordinatesandy inherited from the ~Owes to the transcritical bifurcation in which two orbits of
autonomous case, an appropriate variable for this mapping §is length from different Arnold tongues participate; this
the phase¢ of the external force at the moments of the €vent, noteworthy by itself, seems to have no effect on phase
intersection of the orbit with the secant planer—1. Ina  Synchronization.
nonsynchronized state the values of the phase are scattered
over the whole range between 0 and.an the synchronized |\, | _»g. \MPERFECT PHASE SYNCHRONIZATION OF
regime, on the contrary, they are localized in a relatively THE LORENZ ATTRACTOR
small interval, and the attractor for the mapping appears to
be a narrow stripe. Attractor projections presented in Fig. 6 The picture of phase synchronizationrat 28 differs no-
correspond to the monotonic increase of the frequeficy ticeably from the one reported in the preceding section. The
under the fixed amplitude; they demonstrate the transitiomeasons for this can be traced back to the autonomous case
from the nonsynchronized staf€ig. 6(a)] to the synchro- E=0. In the absence of force, we have the familiar Lorenz
nized attractoFig. 6(c)] and subsequent breakup of syn- attractor{24] [Fig. 1(b)]. It is well established that the saddle
chronization[Fig. 6(e)]. In the intermediate stag¢Big. 6(b) point located at the origin=y=z=0 belongs to the closure
and Fig. &d)] just outside the region of phase synchroniza-of the attractor. The influence of this fact on the dynamics
tion we observe the weak diffusion of the phase: its valuesan be conveniently illustrated by means of return map and
stay in the localized domain for most of the time, but afterreturn times. Strong contraction effectively reduces the two-
several thousands of iterations they leave it and drift upwardgimensional mapping on the Poincapanez=r—1 to a
(or downwardsto the identical stripe located2higher(re-  nearly one-dimensiona(lD) one (the transverse Cantor
spectively, lower. structure of the 2D map appears to be of no importance for
Let us interpret the dynamics of phase in terms of periodiour purposeswhich maps two curves onto themselves. In-
orbits. In Fig. @c), the attractor is presented together with troducing the appropriate coordinate along these cuises,
unstable periodic orbits up to the length of 14; for conve-e.g.,[44]) one arrives at the discontinuous mapping of the
nience, we also show the identical attractor whose phase Ise onto itself; the discontinuity corresponds to the intersec-
shifted by 2r. As can be seen, the attractors are hemmed ition of the Poincarglane by the local stable manifold of the
by periodic orbits'shown by the circles these are the phase- saddle point. The orbits which belong to the local stable
stable orbits. The phase-unstable orbighown by the manifold never return back to the secant surface, and the
crosses are located halfway between the attractors; apparerbits which cross the Poincapane near the trace of this
ently, they lie on the border which separates the attractiomanifold hover for a long time in the vicinity of the origin.
domains. Owing to this, the time required for one turn on the attractor
The individual locking regions for several relatively short is not bounded from above; as a function of the mapping
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FIG. 8. Return time at the Poincasurfacez=r—1, r=28.

FIG. 10. Unstable periodic orbit of length 13 with the largest
Two branches correspond to the two lobes of attractor.

individual frequency.

coordinate, it diverges logarithmically when approaching theevolution, an orbit can make only a finite number of subse-
discontinuity (Fig. 8. quent rotations around one of the saddle foci before slowing
To a certain extent this is compensated by the geometry alown and leaving for the other half-spa@ecording td44],
attractor: after hovering near the origin, the trajectories aréhis number for =28 does not exceed B3
reinjected close to the unstable saddle-focus pdintsy= A bit surprisingly, due to the mentioned compensation
+b(r—1),z=r—1] where the rotation is especially fast, €ffect, the upper branch in Fig. 9 corresponds precisely to the
so that typically a slow turn is followed by a sequence oforbits which come on the nearest to the origin and, hence,
relatively rapid ones. experience the strongest slowdown: as seen in Fig. 10, such
To get an idea of the distribution of characteristic times inan orbit of lengthl makes a single turn in the half-space
the nonforced system, we located all its unstable periodi¢>0 (or x<<0) andl —1 turns in the half-space<0 (respec-
orbits up to the length of 19. The distribution of individual tively, x<<0).

frequencies for these orbits is shown in Fig. 9.
We observe thafunlike the case of =210; cf. Fig. 3 the

Regarding the minimal value @$; for the periodic orbits,
the following argument shows that it can lie arbitrarily close

span between the highest and the lowest values of individudp zero. It is known that the values ofwhich correspond to

frequencies chosen among all the orbits of the lehgttows
with the increase df. The growth of the maximal value af;

the formation of secondargmultiturned homaoclinic orbits
are dense in the range 24:06<33[44]. Consequently, ar-

is limited from above. The highest frequency of rotations inbitrarily close tor =28 one can find homoclinic explosions
the phase space appears to be attained near the saddle foéigsn which the new unstable periodic orbits are created; due
points; it is bounded by the imaginary part of the complexto proximity to the corresponding bifurcation points, the pe-
eigenvalues of the Jacobi matrix at these points which, foriods of these orbits at=28 can be arbitrarily large and,
the parameter employed, equals 108.94. .However this hence, their frequencies arbitrarily low. However, the very
value remains unreachable for periodic trajectories: since theame proximity to bifurcation points makes these orbits ex-
saddle foci lie outside the attractor, periodic and chaotic ortremely unstable and, thereby, hardly relevant for the dynam-
bits pass at a finite distance from them. In the course of timécs on the attractor. Near the bifurcational valug corre-
sponding to the homoclinic explosion, the characteristic
multiplier responsible for the instability is proportional to
| (r—rg)” wherev=(\,+\g)/\g is a combination of the un-

* stable eigenvalug, and the least stable eigenvalugof the

* Te fixed point at the origif45]. Linearization of the equations
under the employed parameter values Yyielas (49
—3y1201)/16=—3.44. Correspondingly, the positive
Lyapunov exponent of this periodic orlfivhich is simply
the logarithm of its characteristic multipliescales as/In(r
—rg) and diverges atg. Since the weight of the contribution
of an unstable periodic orbit to chaotic dynamics is inversely
proportional to the Lyapunov exponent of this orf80,39,

it is obvious that close to the homoclinic explosion such a
contribution is negligible. Besides, our calculations show
that in the interval 2%r <29 the first 26 symbols in the
symbolic itinerary of the unstable manifold of the orid#¥]

do not change; accordingly, homoclinic bifurcations with the
number of turns smaller than 25 do not occur inside this
interval; consequently, the periodic orbits with anomalously
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FIG. 9. Individual frequencies of periodic orbits fat 28. The
mean frequencw, of autonomous chaotic motion is shown by the
solid line.
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FIG. 12. Plateaus of imperfect phase synchronization for differ-
FIG. 11. Difference between mean frequenoyand driving ent amplitudes of external force.

frequency Q estimated from 19 (solid circle3 and 13 (open

circles turns of chaotic orbity =28, E=10. within a single nonsynchronized turn of the orbit, the value

. . of ¢ provides a ratio between the number of nonsynchro-
low frequencies which can be met there, should have larggjzeq turns,N,,, and that of the synchronized turniy:

lengths. o  |e|=N,/Ng. The smallness of inside the plateaus confirms
We can conclude that the band of individual frequenciesnat the synchronized segments prevail within a single cha-

for the periodic orbits with short and moderate lengths istic orbit. This permits us to view the corresponding states as
bounded both from below and from above. Neverthelessﬁ,:nea”yn synchronized; delineating the region of plateaus on

variation in the frequencies is remarkably large: the differ-yne parameter plane, we obtain the domain of imperfect
ence between the highest and the lowest marks exceed's 11%ase synchronization. Naturally, owing to a certain arbi-
of the mean frequency,=8.36 . .. [the latter value is trariness in determination of the plateau end points, the bor-
obtained by applying the expressi) to the chaotic trajec-  Jers of this domain are somewhat fuzzy.
tory averaged over the length bf=10’ turns|. Taking into Again, the dynamics of phase is captured by the Poincare
account the broad scattering of the typical times of the SYSmapping. Unlike the case of the previous section, the map-
tem, itis intuitively clear that synchronizing all of them by a ping attractor never resembles a stripe which is localized in
weak external forcing is not an easy task. the phase variable. Let us fix a value of the forcing am-
To check for phase synchronization, we use the same crijityde and traverse the region of imperfect synchronization
terion as in the preceding section: the difference between thl_e,sy increasing the value of the driving frequency. Along this
mean frequency» on the attractor and the frequen€y of  |ine in the parameter space, the attractor exhibits the trans-
the driving force. Fixing the forcing amplitudewe scan the  formation from a diffuse cloudFig. 13a)] into reasonably
range of the values of) searching for vanishing or nearly \ye|l outlined patterns of Figs. 18) and 13c) and further
vanishing values ofv— (). Typical results are presented in into a diffuse set depicted in Fig. &8. In the most ordered
Fig. 11; hereE=10. From the first view, the horizontal pla- pattern[Fig. 13c)] one can distinguish the heavily populated

teau seems to indicate to the perfect phase synchronizatiogentral regiowhich spreads over approximately half of the
However, a closer lookcf. the inset in Fig. 11 shows that

the plateau is, first, not exactly horizontal, and, second, lies,
at a small but finite distance above zero. The latter circum-
stance cannot be attributed to insufficient statistics caused b
the low number of orbit turndN: the estimates from\
=10° andN=10" as plotted in the inlet, match pretty well.

Similar results are obtained for other values of the driving
amplitude(Fig. 12). For each fixed value dt>2 there ap-
pears to be an interval of values of the driving frequency
aroundw, in which o —Q as a function of} is nondecreas-
ing or decreases very weakly.

These (not always horizontal plateaus can be located
above zero E<14) or below zero E=14), but invariably
close to it: in each of them the value eE=|w—Q|/Q is
everywhere smaller than 0.01. Numerical observations indi-
cate that here the trajectory can be separated into alternatin ~ - 8 o
synchronized and nonsynchronized segments, so that it 5 0 5 5 0 5
phase follows the phase of the driving phase in the former X X
and departs from it in the latter. In the rough assumption that FIG. 13. Attractors of the Poincamapping atr =28, E=10:
each new Zr increment of the phase difference is gained(a) Q=7.5, (b) 2=8.3,(c) 2=8.35, and(d) ) =8.5.
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FIG. 14. Main phase-locked regions of individual periodic or- 0 40'00 soloo 12000
bits; r =28. Gray domain: region of imperfect phase synchroniza-

tion. FIG. 15. Temporal development of difference between phases of
the driven system and the driving force in the state of imperfect
phase rangeand the sharp and relatively dense “whiskers” phase synchronizatiofE=10, (= 8.3; crosses denote intersections
as well as the surrounding cloud in the border regions. Apwith Poincaresurface.
parently, in the course of evolution the system spends most
of the time in the central region; from time to time it drifts they compensate each other in the net effeantd the jumps
along the whiskers to the identical pattern which is shiftedbetween the stairs look like occasional phase slips. At the
along the phase by+2. Further, we will attempt to interpret starting point the system and the driving force are assigned
this dynamics with the help of the information about thethe same phase value; within the first stair they remain in
embedded periodic orbits. phase; within the second stair the driving force has a phase
Similarly to the case =210, we have located on the pa- lag of 27 or, in other words, of one period; within the third
rameter plane the main Arnold tongues for individual peri-stair the time lag equals two periods of external force, and so
odic orbits(Fig. 14. In the autonomous system the numberon. In the course of long-time evolution, we observe not only
of periodic orbits of the length rapidly grows with the in- 27 but also 4r jumps; the latter are, however, much more
crease of: there are such 224 orbits witks 10; even taking seldom. Noticeably, each jump upwards is preceded by a
into account the mirror symmetry of the system due to whichshort local decline downwards; this indicates that immedi-
all periodic orbits with odd length and most of those with ately before the jump the phase trajectory rotates relatively
even length have symmetric twins, these orbits still deliverslow.
116 different main Arnold tongues. Presenting all of them Let us now zoom in on the vicinity of a typical jump
within a single plot hardly makes sense. We show only thdinset of Fig. 19. Here, the crosses denote the moments of
principal phase locking regions which correspond to typicalintersections with the Poincasurface; between them, the
periodic orbits at the left and the right ends of the frequencyphase of the trajectory is approximated by linear interpola-
band; as long as the forcing amplitude remains moderate, tH#on. We observe that what seemed to be an instantaneous
rest of the main Arnold tongues appears to be lying betweephase slip proves to be a kind of phase drift, a process of
the plotted ones. noticeable duration: a transition between two stairs requires
According to the results presented in Fig. 14, there is aot fewer than a dozen turns of the orbit. In the temporal
large domain on the parameter plane in which(aflnearly  pattern of the transition one sees a remarkably long-time in-
all) main Arnold tongues overlap. Following the discussionterval between two intersections of the Poincglene in the
in the preceding sections, one would expect to observe in thigery beginning of the transition process; this interval is pro-
domain the state of perfect phase synchronization. Howeveruced by a very slow orbit turn. This slowing down is fol-
this is not the case, and even the states which we denote wved by several very short intervals; they not only enable
imperfectly synchronized occupy only a part of the overlap-the system to compensate the local phase lag accumulated
ping region. It appears that to determine only the main Ar-during the slow motion, but even catapult it upwards to the
nold tongues is insufficient for the explanation of the entirenext stair. The whole picture reminds us of the unstable pe-
picture; some additional information is apparently required.riodic orbits which belong to the upper branch of the fre-
Let us follow the temporal development of difference be-quency distribution displayed in Fig. 9, with their slow pas-
tween the phase of the system and the phase of the exterrgfiges near the saddle origin and subsequent rapid rotations
force. As can be seen from Fig. 15, this difference plottedaround the saddle foci. The high individual frequencies of
against time resembles a staircase in which the relativelfhese orbits by far exceed the average frequengcy 8.365;
long horizontal “stairs” alternate with short jumpgWe  consequently, not only their main locking regions are rel-
plot, in fact, the phase difference divided byr2r, in other  evant, but also certain secondary Arnold tongues can be of
words, the difference between the number of intersectiongnportance.
with the Poincareplane and the number of periods of exter-  Take a periodic orbit which consists bfurns and has in
nal force) The entire plotted interval contains 16 000 orbit the autonomous case the individual frequengy For | suf-
turns. ficiently high, the valud (I — 1)/l Jw; (which corresponds to
Each stair corresponds to a segment of synchronized mdhe situation when the orbit closes not aftésut afterl —1
tion (minor oscillations around the horizontal line are causederiods of the external forgealso lies inside the band of
by our arbitrariness in the choice of the Poincateface; individual frequencies, and the corresponding Arnold tongue
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FIG. 16. Main locking regior{right) and the region of locking
12:13(left) for the periodic orbit of length 13. Gray domain: region A
of imperfect phase synchronization.

can be of relevance. Formally, this may hold for any fre-
guency distribution, but in the case of a narrow frequency
band the value of should be rather higtifor the nearly
monochromatic attractor from Sec. Ill one would require
>500), and the chance to stay long enough near the very FIG. 17. Periodic orbits and the attractor in the state of imper-
long unstable periodic orbit is negligible. On the contrary, infect synchronization. Dots, chaotic trajectory; crosses, periodic or-
the case of =28 this phenomenon can be detected alreadyits locked in the ratio 12:13; circles, periodic orbits locked in the
for |=12 (the estimate is based on the valueswpfof the  ratio 13:14; triangles, periodic orbits locked in the ratio 14:15. Ar-
autonomous system; since the Arnold tongues in the forcetpws show the direction of motion along the orbi~=10, Q)
system have finite width, the actual values lomay be =83

slightly lowep. For most of the time thg trajectory on the e periodic orbit of length 13. As can be seen, the tongues
attractor wanders between unstable tori whose phase-sta ?/erlap alE=4.68; the adjacent area in the parameter plane

orbits are directly locked to the frequency of the driving he|ongs to the region in which imperfect phase synchroniza-
force, but now and then it visits neighborhoods of tori whoseijon, s  observed. In this parameter domain we detect the
frequencies are locked in a ratib{1)/l. During these vis-  coexistence of two different phase-stable periodic orbits,
its, the phase of the orbit grows faster than that of the exterhoth of which stem from the same unstable periodic solution
nal force; by the time when the trajectory is bounced back, &f the autonomous system. One can expect that in the course
total gain of 2 is reached. Similarly, the phase gains of 4 of sufficiently long evolution a chaotic trajectory will visit
can be interpreted as rare passages of a chaotic trajectotlye neighborhoods of both orbits; in one of these neighbor-
near the periodic orbits locked in the frequency ratlo ( hoods it will keep pace with the phase of external force,
—2)/1; in our case, these orbits should have a lerdgtl2l.  whereas in the other it will eventually runm2ahead of it.

The described phenomenon is a “masked” form of phaséNotably, two periodic orbits with different winding numbers
synchronization: the observed gaifts losse$ of the phase cannot be simultaneously .placed onto a surface of a single
do not result from instantaneous phase slips. Although th&vo-torus(produced by action of the forcing from the “pa-
differencew— ) does not vanish in this state, the motion "ental” periodic solution of the autonomous sysferthis
remains synchronized for all the time, but synchronized tdMPplies that already the moderate amplitudes of forcing can
differentfrequencies. cause a br_eakup of invariant tori. - .

As an example we take an orbit of length 13 which makes To provide a geometric illustration of the descrlbeq,phe-
one slow turn in the half-space>0 and 12 fast turns in the "°Menon, we plot in Fig. 17 the attractor of the Poincare
half-spacex<0 (cf. Fig. 10: its individual frequency in the map on the secant plane. The marked points denote the un-

= . stable periodic orbits of the lengthfor =13, [ =14, and|
aut_onomous system equaj$f8.925 9B ... .Besides f[he =15 which are frequency locked in the ratio{(1)/I. It can
main Arnold tongue emanating from;, the other locking

oo ) o be seen that these points can be found both in the bulk of the
region is of apparent interest for us: it corresponds 10 theyyracior and in the “whiskers.” The chaotic orbit which

situation in which the periodic orbit is closed after 12 periOdSapproaches one of such orbits inside the bulk makes with it
of external force. This secondary Arnold tongue has its tip ingn excursion downwards along the whisker and is trans-

the point (©=12/130;=8.2393¢ ... E=0), and lies ported into the bulk of identical pattern which is shifted
much closer tav, . Therefore we can expect that in the rangealong ¢ by 2.

of frequency values corresponding to plateaus of Fig. 12 the Now we can interpret the origin of short nonflat plateaus
considered unstable periodic orbit is locked by external forcén Fig. 12 as the complicated interplay between the main
in a ratio 12:13. A passage of a chaotic trajectory near thi#rnold tongues of relatively short periodic orbits and the
synchronized orbit would cause a net phase gainmfahd  secondary locking regions of occasionally visited longer or-
result in a transition to a higher stair in a plot of Fig. 15.  bits. When the driving frequenc) is increased from the
In Fig. 16 we present two described Arnold tongues forlow starting value, the motions on the tori born out of short

-10 -5 0 5 10
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2 . . - - tween the ratios are apparently owing to the influence of
noise and to the nonstationarity of the process. Our results
imply that alternation of locking ratios can also take place in
a completely stationary deterministic setup, under the provi-
sion of the broad distribution of return times.

In the first lines of this paper, we have interpreted syn-
chronization as the adjustment of coupled subsystems. Ad-
justment is tantamount to introducing some kind of order
into the dynamics: all known forms of chaotic synchroniza-
tion are known to decrease the degree of chaoticity. Geo-
metrically, synchronization manifests itself in the reduction
of dynamics from the entire phase space onto some attracting

N(T) - Cr)~'QT

2 . . s . invariant hypersurface; in the case of complete synchroniza-
0 20000 40000 tion this is an explicitly given symmetrical hyperplane
T whereas in the case of generalized synchronization the sur-

fface is determined by the functional interrelation between the
leading and the led subsystems. The case of phase synchro-
nization is less transparent, owing to the hardly avoidable
ambiguities in the definition of the phase. Nevertheless, as
can be seen from the comparison of Figa)éand Fig. &c),
. _ _ _ there is no doubt that the portion of phase space occupied by
orbits are not yet locked in their main Arnold tongues, andthe attractor in the perfectly synchronized state is much
the frequency of rotations near these tori is larger tharin ~ smaller than in the absence of synchronization. The mea-
this parameter range the secondary lockings for longer orbitsured phase of the system, being adjusted to the phase of the
can be encountered; since their locking ratios are smalledriving force, does not follow it minutely, and the attractor in
than 1, the frequencies of locked motions upon them alséig. 6(c) remains a stripe of a finite width which does not
exceed(). Altogether, this ensures that the inequality  shrink into a curve. The loose relation between the phases
— Q>0 holds. Further, we enter the parameter region irdefines the geometry of the attracting “fat” hypersurface.
which most of the short orbits have their main Arnold For the case of imperfect phase synchronization, however,
tongues. As soon as we reach the value€ait which the  the picture seems to be more complicated. In the temporal
motions near the locked short orbits dominate, the state dfvolution the prevailing long segments of frequency locking
imperfect phase synchronization is observed. Formally, we 1 aré interrupted by short time intervals in which the fre-
can write w= x() where the factor is a (not everywhere quencies, albeit rationally locked, do not coincide. Each

. . . ) . . locking defines its own invariant “hypersurface”; accord-
differentiablg function of (); k remains constant inside the . : - ! -
small intervgls of(Q) in which no crossings of the tongue mlgly, in the phase spacfe theftraject%ry moveslfora long tlrdne

o "~ along one(*main” ) surface, for a short time leaves it an

borders occur. Due to the contribution of secondary lockings g ( )

SR ) - makes an excursion along the other surface, and so on. The
in this parameter range one he1)>1; hence inside such giready mentioned fact that phase is usually a “hidden”

intervals the functionw—Q=€(x—1) is increasing; this yariabie makes especially difficult a proper characterization
explains the nonmonotonicity of synchronization plateaus. of this unconventional ordered state, either through recon-
Finally, in the course of an increase@f we cross one by  struction of the underlying invariant geometric structures, or
one the right boundaries of both the main and the secondanyy other means; the corresponding methods require further
Arnold tongues. In the vicinities of the respective just-out-elaboration.
of-locking tori, the phase of a chaotic trajectory grows Another problem which deserves attention in this context
slower than the phase of the driving force. As a consequencés the breakup of unstable tori under the increase of the forc-
the rare segments of drift downwards start to appear in théng amplitude, and the consequences of this breakup for the
time dependence of the difference between these phasg¥ase synchronization. Further, unstable periodic orbits in
These shifts downwards eventually balatck Fig. 18, and ~ autonomous systems can have structurally stable homoclinic
finally exceed the effect of rare shifts upwards caused by stiland heteroclinic orbits; the effects of periodic perturbation of
surviving secondary tongues; this marks the end of the rerespective homoclinic structurgtor example, existence of
gion of imperfect synchronization. additional connections between phase-unstable and phase-
stable orbits in the locking regiongemand a special inves-
tigation. These fine aspects remain outside our current de-
V. DISCUSSION scriptive approach; however, their elucidation by means of a
more rigorous analysis can add new important details to our
émderstanding of the synchronization phenomena.

FIG. 18. Temporal evolution of difference between phases o
the driven system and the driving force=28, E=14, and()
=8.25. The plotted segment corresponds t016* turns of the
orbit.

The “imperfections” in phase synchronization which we
have discussed in the previous section do not signify th
breakdown of synchronized state. Although the formal con-
dition = w does not hold, the system appears to be phase
locked all the time, but the values of locking ratios alternate We are grateful to A. Pikovsky, M. Rosenblum, and G.
in the course of chaotic evolution. A similar phenomenon ofOsipov for stimulating discussions. The research of E.-H.P.
nonconstant locking ratios in phase synchronization has beemas partially supported by the Korea Science and Engineer-
recently detected in the experimental data describing humaimg Foundation. M.Z. acknowledges the support of the Max-
cardiorespiratory activity46,47. There the switchings be- Planck Gesellschaft and SFB-555.
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